
| Rapid7.com 1Top 10 Business Logic Attack Vectors

W
hitepaper

Top 10 Business Logic
Attack Vectors
Attacking and Exploiting Business Application
Assets and Flaws – Vulnerability Detection to Fix

Contents
Introduction 2

Business Scenarios and Issues 2

Attack Vectors for Business Logic 4

AV1 - Authentication flags and privilege escalations at application layer 4

AV2 - Critical Parameter Manipulation and Access to Unauthorized Information/Content 5

AV3 - Developer’s cookie tampering and business process/logic bypass 6

AV4 - LDAP Parameter Identification and Critical Infrastructure Access 7

AV5 - Business Constraint Exploitation 9

AV6 – Business Flow Bypass 10

AV7 - Exploiting Clients Side Business Routines Embedded in JavaScript, Flash or Silverlight 12

AV8 - Identity or Profile Extraction 13

AV9 - File or Unauthorized URL Access and Business Information Extraction Identity 14

AV10 – Denial of Services (DoS) with Business Logic 15

Conclusion 15

| Rapid7.com 2Top 10 Business Logic Attack Vectors

Business Scenarios and
Issues
As more and more business processes
have migrated to web applications,
web applications have become the
core mechanism for effecting business
processes over the Internet.

Before launching a web application
into production on the Internet, it is
imperative to test it thoroughly from a
security standpoint. The testing can be
achieved largely through black-box
testing. There are two black-box
testing approaches:

• Using an automated software to
scan for vulnerabilities

• Doing a manual review of the
applications security and logic
enforcement with human intelli-
gence.

Automated scanners are great at
finding syntax issues and can help in
discovering injection vectors like SQLi
or XSS, but when it comes to business
logic flaws, automation has known
limitations. Humans are better at
identifying critical behavioral patterns.
It is important to complement the
automated testing process with a
human discovery of security risks that
can be exploited by manipulating the
business logic. Business logic exploits
can result in serious compromise of
internal and external applications even
in applications with safeguards such
as, authentication and authorization
controls. This paper describes how an
application security effort can be more
effective by augmenting automated
vulnerability assessment solutions
with in-depth manual penetration
testing techniques. It also details the
top 10 business logic attack vectors

that humans should look for in their
manual complementary tests and
gives guidelines for this testing.

Example Business Scenarios

A business process is an action or a
set of actions that facilitates how one
internal or external entity transacts
with another internal or external
entity. Automating business processes
such as customer purchase orders,
banking queries, wire transfers or
online auctions, for example, requires
entities to have access to extremely
sensitive information. The following
are some illustrative examples of
exploitable business processes.

Retrieving a Profile

For example, Jack’s profile can be
fetched with id=1001 and if this value
changed to 1089 we get another user’s
information. A scanner may go on and
change the value from 1001 to ‘1001 to
find SQL injection, but not to 1089 and
would miss deducing that the applica-
tion is vulnerable to authorization
bypass. By changing the “id” from
1001 to 1089, a pen tester can see that
John’s profile , rather than Jack’s, is
being displayed.

Shopping Cart

Let us consider an online store
application where customers add
items to their shopping cart. The
application sends the customers to a
secure payment gateway where they
submit their order. To complete the
order, customers are required to make
a credit card payment. In this shopping
cart application, business logic errors

may make it possible for attackers to
bypass the authentication processes to
directly log into the shopping cart
application and avoid paying for
“purchased” items.

Modeling a Business
Process Flow

In order to test the business logic of a
web application, it is necessary to first
understand the steps that the applica-
tion is going through. Outlined below is
the modeling of a sample business
process flow, i.e. modeling the events
that occur to start a process, perform
intermediate processes (and sub-pro-
cesses), and the end results of the
process flow.

Example:

Payment transaction flow (Payment
Transactions between store and
payment service provider)

1. Customer builds a shopping cart.
i.e. adds, removes or updates
items by browsing through the
merchant’s offerings and decides
to place an order.

2. Customer submits order. Here, the
web application invokes the Order
capture process. The customer

DEFINING THE USER

• Not just your in-house employees

• Not just execs

• Not just your
contractors

• Don’t forget administrators—they
can specifically be targeted

Introduction
Significant attention has been given to codified, groups of standard syntax-based web application attacks such as SQL
Injection (SQLi), Blind SQL Injection (BSQLi), and Cross Site Scripting (XSS). These classes of attacks are easier to under-
stand and test for, because they can be broken down into a series of attack types that are somewhat uniform across
applications. Another class of attacks, business logic flaws, defy easy categorization and can be more art than science to
discover. The purpose of this paper is to give an overview of several types of business logic attacks as well as some tips to
pen testers on how to test for these types of vulnerabilities.

| Rapid7.com 3Top 10 Business Logic Attack Vectors

provides payment and shipping
data. The server approves pay-
ment with the payment service
provider.

3. Payment authorization/approval is
completed. The Credit Card
authentication process is invoked
i.e. credit card transaction approv-
al is submitted for a merchant by
the card-issuing bank. Payment
transaction is either aborted or
completed.

4. The payment is deposited, the
order is finalized, the items are
released from inventory and the
order is shipped to the customer’s
shipping address.

When manually testing business logic,
the tester must consider the possibili-
ty of one or all of the intermediate
steps can be bypassed? At stake, is a
treasure trove of information – the
customer’s personal and financial
details – that is available to an attack-
er should an application vulnerability
that is exploitable, exist. The operative
word, here, is “exploitable”. If, indeed,
the “attacker” is able to exploit the
existing vulnerability, the following
scenarios are possible:

1. The “attacker” gets direct access
to orders that have been received,
processed, shipped.

2. The “attacker” gets access to

payment transaction details, such
as shopper credit card data,
merchant information.

In the end, the attacker avoids paying
for “purchased” items.

| Rapid7.com 4Top 10 Business Logic Attack Vectors

Attack Vectors for Business Logic
The following are 10 of the most common business logic exploits that we test for as a part of manual penetration tests.
While the specific tests may vary from application to application, these should give the reader a good starting place as
well as a toolkit of ideas for additional testing.

Once you see the names of the parameters
and cookies, you can determine if privilege
information is being mapped to the parame-
ters. HTTP protocol analysis and application
behavior can help in identifying this loophole.
This is not only the most common logical
problem, but it also relatively easy to identify.
For example, as shown below, a cookie flag
contains ACL settings which have been de-
fined by the developer. The last right
character of the cookie value RYWYDN is ”N”.
If this is changed to “Y”, it grants write access
on the resource.

AV1 - Authentication
flags and privilege
escalations at application
layer
Applications have their own access
control lists (ACLs) and privileges. The
most critical aspect of the application
related to security is authentication.
An authenticated user has access to
the internal pages and structures that
reside behind the login section. These
privileges can be maintained by the

database, LDAP, file etc. If the imple-
mentation of authorization is weak, it
opens up possible vulnerabilities. If
these vulnerabilities are identified
during a test, then there is the poten-
tial for exploitation. This exploitation
would likely include accessing another
user’s content or becoming a high-
er-level user with greater permissions
to do greater damage.

Example:

An application is maintaining ACLs and
passing them as cookies at the time of

authentication. This cookie can be
reverse engineered by a malicious
attack and an escalation exploit can be
crafted. In some cases with Web 2.0
applications, these routine are done in
JavaScript which can be easily deci-
phered in some cases and exploited. If
business logic is buried in a Flash or
Silverlight application component then
it is possible to access the authoriza-
tion information and attempt to
manipulate it into an exploit.

Here, manipulated the new request will grant
write access.

How to test for this business logic flaw:

• During the profiling phase or through a proxy observe the HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both the name of
the parameter and the value need to be analyzed.

• If the parameter name is suspicions and suggests that it has something to do with ACL/Permission then that becomes a
target.

• Once the target is identified, the next step is evaluating the value, it can be encoded in hex, binary, string, etc.. The tester
should do some tampering and try to define its behavior with bit of fuzzing.

• In this case, fuzzing may need a logical approach, changing bit patterns or permission flags like 1 to 0 or Y to N and so
on. Some combination of bruteforcing, logical deduction and artistic tampering will help to decipher the logic. If this is
successful then we get a point for exploitation and end up escalating privileges or bypassing authorization.

| Rapid7.com 5Top 10 Business Logic Attack Vectors

Here, a customer of a bank opens his/her personal information page. The URL
shows that the customer’s id is being passed in a query string.

An attacker can tamper with the customer id parameter and can try various
permutations of numbers and combinations.

Here, you can see that an attacker has obtained access by using a different
user’s ID and has successfully guessed a correct customer id (other than their

own). Hence, the attacker can now access other user accounts based on simple
guesses or brute force techniques.

AV2 - Critical Parameter
Manipulation and Access
to Unauthorized
Information/Content
HTTP GET and POST requests are
typically accompanied with several
parameters when submitted to the
application. These parameters can be
in the form of name/value pairs, JSON,
XML etc. Interestingly, these parame-
ters can be tampered with and guessed
(predicted) as well. If the business logic
of the application is processing these
parameters before validating them, it

can lead to information/content disclo-
sure. This is another common business
logic flaw that is easy to exploit.

Example:

A banking application is authenticating
a user and then allowing the user to
access his/her last 10 transactions.
While making this request, several
parameters are going to the application
but one of these parameters is the
“accountid” parameter. If this parame-
ter is not truly random and easily
guessable, then an attacker can inject
another user’s account number. At this
point, if business logic is not going back

and mapping the existing session to the
original account that was logged into
the application, then the other user’s
account information gets disclosed.
This can be a lethal blow for an applica-
tion. This can also happen with a
shopping cart system where you see
your own order based on a parameter
called “orderid”. By modifying this
parameter you may end up seeing
another user’s orders. Again, parame-
ter analysis and behavior can help in
identifying this attack vector.

How to test for this business logic flaw:

• During the profiling phase or through a proxy, observe HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both the name of
the parameter and the value need to be analyzed.

• Observe the values in the traffic and look for incrementing numbers and easily guessable values across all parameters.

• This parameter’s value can be changed and one may gain unauthorized access.

In the above case we were able to access other users profiles.

| Rapid7.com 6Top 10 Business Logic Attack Vectors

Again, here is a cookie that you may end up deciphering because it is too simple and similar.

Again, here is a cookie that you may end up deciphering because it is too simple and similar.

AV3 - Developer’s cookie
tampering and business
process/logic bypass
Cookies are an essential component to
maintain state over HTTP. In many
cases, developers are not using
session cookies only, but instead are
building data internally using session
only variables. Application developers
set new cookies on the browser at
important junctures which exposes
logical holes. After authentication
logic sets several parameters based
on credentials, developers have two
options to maintain these credentials
across applications. The developer can

set the parameters in session vari-
ables or set cookies in the browser
with appropriate values. If application
developers are passing cookies, then
they might be reverse engineered or
have values that can be guessed/
deciphered. It can create a possible
logical hole or bypass. If an attacker
can identify this hole then they can
exploit it with ease.

Example:

A trading portal allows a user to log in
and then set a few values as cookies
on the browser. One of these cookies is
storing the user’s membership
category as silver, gold or platinum.

Now this cookie defines the trading
limit on the application layer. If an
attacker deduces this information and
manipulates this cookie, then the
attacker will be able to upgrade their
membership. There are several
scenarios where these cookies can be
exploited. If the application is giving
more than one cookie then it is main-
taining some logic based on cookie
and not relying truly on session cookie
only. This scenario is becoming
increasingly complex with “single sign
on” where cookies are accessible and
applicable across domains.

Simple sequential values are changed. Developer cookies are vulnerable to few logical attack vectors.

How to test for this business logic flaw:

• During the profiling phase or through a proxy observe the HTTP traffic, both request and responseblocks.

• Analyze all cookies delivered during the profiling, some of these cookies will be defined by developers and are not
session cookies defined by the web application server.

• Observe cookie values in specific, look for incrementing easily guessable values across all cookies.

• Cookie value can be changed and one may gain unauthorized access or logical escalation.

| Rapid7.com 7Top 10 Business Logic Attack Vectors

For example, over here we get Jack’s profile and a filter is passing a name to an underlying LDAP request.

This can be bypassed if validation is not in place at the business logic layer of the application and “*” gets injected in to the LDAP filter.

AV4 - LDAP Parameter
Identification and Critical
Infrastructure Access
LDAP is becoming an important aspect
for large applications and it may get
integrated with ”single sign on” as
well. Many infrastructure layer tools
like Site Minder or Load Balancer use
LDAP for both authentication and
authorization. LDAP parameters can
carry business logic decision flags and
those can be abused and leveraged.
LDAP filtering being done at the
business application layer enable
logical injections to be possible on
those parameters. If the application is
not doing enough validation then LDAP

injection and business layer bypasses
are possible.

Example:

A large telecom company is leveraging
LDAP services for their authentication
and authorization on large infrastruc-
ture applications and users can login
from mobile devices, tablets, and
traditional web browsers. LDAP is also
integrated into the company’s web
services for business-to-business
communication. The LDAP parameter
uses “email id” to authenticate and
pass it to an LDAP server with other
tree nodes (ON, CN etc.). This parame-
ter allows rights for read/write/delete
based on rules defined on the LDAP

server. The application is allowing “*”
and that ends up giving full access.

Because of this full permission set,
the attack can go ahead and change
their settings. For example, a user can
change their access plans, billing
information etc. This can be a big hole
at the application layer. Since LDAP is
being used on more than one applica-
tion, all of the applications can be
attacked and exploited using LDAP
bypasses. It is relatively common with
infrastructure related applications and
intranet apps. For example, over here
we get Jack’s profile and a filter is
passing a name to an underlying LDAP
request.

| Rapid7.com 8Top 10 Business Logic Attack Vectors

How to test for this business logic flaw:

• During the profiling phase or through a proxy observe the HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both the name of
the parameter and the value need to be analyzed.

• Analyze parameters and their values, look for ON,CN,DN etc. Usually these parameters are linked with LDAP. Also look
for the parameter taking email or usernames, these parameters can be prospective targets.

• These target parameters can be manipulated and injected with “*” or any other LDAP specific filters like OR, AND etc. It
can lead to logical bypass over LDAP and end up escalating access rights.

| Rapid7.com 9Top 10 Business Logic Attack Vectors

Here is an example where a JSON layer call is injected with tampered limit.

Limit is controlled by variable which is hidden in JSON.

How to test for this business logic flaw:

• During the profiling phase or through a proxy observe the HTTP traffic, both the request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both the name of
the parameter and the value need to be analyzed.

• Analyze hidden parameters and their values, look for business specific calls like transfer money, max limit etc. All these
parameters which are dictating a business constraint can become a target.

• These target parameters can be manipulated and values can be changed. It is possible to avoid the business constraint
and inject an unauthorized transaction.

AV5 - Business
Constraint Exploitation
The application’s business logic should
have defined rules and constraints that
are very critical for an application. If
these constraints are bypassed by an
attacker, then it can be exploited. User
fields that have poor design or imple-
mentation are often controlled by
these business constraints. If business
logic is processing variables controlled
as hidden values then it leads to easy
discovery and exploitation. While
crawling and profiling the application,

one can list all these possible different
values and their injection places. It is
easy to browse through these hidden
fields and understand their context; if
context is leveraged to control the
business rules then manipulation of
this information can lead to critical
business logic vulnerabilities.

Example:

A trading application is controlling a
monetary upper limit for each of their
users. Users are limited to this
amount and cannot create transac-
tions above this limit. If the application

controlling the limit amount as part of
a hidden value and is passing this
information to JSON then it is con-
trolled by the user and an attacker can
manipulate this amount and bypass
this constraint to manipulate the limit
to be higher than what is allocated.
This leads to an exploitable vulnerabil-
ity. In some cases, it is possible to do
an integer overflow and reverse
transactions as well. If the application
allows the user to place an order for a
negative quantity then we test to see
what will happen. Will the attacker get
paid by the shop and will our credit
card be credited instead of charged?

| Rapid7.com 10Top 10 Business Logic Attack Vectors

AV6 – Business
Flow Bypass
Applications include flows that are
controlled by redirects and page trans-
fers. After a successful login, for
example, the application will transfer
the user to the money transfer page.
During these transfers, the user’s ses-
sion is maintained by a session cookie
or other mechanism. In many cases,
this flow can be bypassed which can
lead to an error condition or informa-
tion leakage. This leakage can help an
attacker identify critical back-end in-
formation. If this flow is controlling
and giving critical information out then
it can be exploited in various use cases
and scenarios.

Example:

An airline ticketing service has a seat
allocation process that requires three
steps. In the last step, the application
sends confirmation to the user. After
studying the flow, the user figures out
a way to bypass step two and go di-
rectly to step three. While the
application attempts to pass the seat
allocation information in step three,
the user can inject an upgraded seat
assignment in business class. The
application does not detect the injec-
tion and assumes the user is following
the proper steps and allocates a seat
in business class.

Similarly, a bank application does a
three step process for a wire transfer
and stores information about the ses-
sion. It then passes a valid token as
the last step and expects the browser
to return that token. Now, the user
goes back to a previous step and
changes the value that eventually
changes the values on the server side
session after the post. This enables an
injection in the final step which already
has a validated token. In this case the
transaction will go through success-
fully.

Here is a simple step process for plac-
ing an order.

Step 1 – Selecting Items

Step 2 - Finalizing Items (Multiple Selections)

Step 3 – Some Parameters Controlling Discounts Hidden To The User

| Rapid7.com 11Top 10 Business Logic Attack Vectors

Here is a bypass, one can change this parameter and obtain a greater discount.

How to test for this business logic flaw:

• During the profiling phase or through a proxy observe the HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both the name of
the parameter and the value need to be analyzed.

• Identify business functionalities which are in specific steps (e.g. a shopping cart or wire transfer).

• Analyze all steps carefully and look for possible parameters which are added by the application either using hidden
values or through JavaScript.

• These parameters can be tampered through a proxy while making the transaction. This disrupts the flow and can end up
bypassing some business constraints.

| Rapid7.com 12Top 10 Business Logic Attack Vectors

Here is an
example where
a user’s hash
being main-
tained on client
side on
localStorage.
This hash is a
simple MD5
hash of user’s
name.

AV7 - Exploiting Clients
Side Business Routines
Embedded in JavaScript,
Flash or Silverlight
Many business applications are now
running on rich internet application
(RIA) frameworks leveraging JavaS-
cripts, Flash, and Silverlight. In many
cases, the logic is embedded in the
client side component. These compo-
nents can be reverse engineered. If it
is in Flash or Sliverlight, both of these
files can be decompiled and the actual
logic used by the application can be

discovered. The application running on
the client side using JavaScript can be
debugged line by line to identify
embedded logic. This includes any
client side logic to implement algo-
rithms for cryptography, credential
storage, privilege management etc.
Once the client side code has been
reverse engineered, it can be exposed
attacks that lead to further exploita-
tion.

Example:

A banking application maintains
critical information on the client side

in the browser and sends information
at the time of requirement. This
information is being used at the time
the transaction is performed. The
browser makes a call to the applica-
tion and sends encrypted code back.
This code is created based on his/her
account number. The logic of encrypt-
ing this code is created in JavaScript
and one can actually reverse engineer
the call. This allows an attacker to
look at another user’s information by
simply guessing their account num-
bers. The same logic is possible with
Silverlight and Flash files as well.

Now that we know the hash type and value used by the application, the above value can be changed and used to hijack
another user’s account.

How to test for this business logic flaw:

• Once page is loaded in the browser one needs to analyze DOM using firebug or any other similar tool.

• Identify all variables residing on browser stack.

• Look for suspicious values and parameters.

• One can manipulate these values inside DOM and replay the HTTP request. If business logic is trusting only on client
side then it may end up giving unauthorized access.

| Rapid7.com 13Top 10 Business Logic Attack Vectors

Jack’s profile accessed using following URL.

Now an attacker can access other user’s profile by guessing encryption/hashing logic.

How to test for this business logic flaw:

• During the profiling phase or through particular proxy observe HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in name-value pair, JSON, XML or Cookies. Both name of
parameter and value need to be analyzed.

• Look for parameters which are controlling profiles.

• Once these target parameters are identified, one can decipher, guess or reverse engineer tokens. If tokens are guessed
and reproduced – game over!

AV8 - Identity or
Profile Extraction
A user’s identity is one of the most
critical parameters in authenticated
applications. The identities of users
are maintained using session or other
forms of tokens. Poorly designed and
developed applications allow an
attacker to identify these token
parameters from the client side and in
some cases they are not closely
maintained on the server side of the

session as well. This scenario opens
up a potential opportunity for abuse
and system wide exploitation. The
token is either using only a sequential
number or a guessable username.

Example:

Let’s assumes a social networking site
running on a multi-domain and
platform is doing “single sign on” and
maintaining a unique session token for
authentication and authorization.
There is a server called Login where

the user information is stored. When
the user clicks on their profile, all
requests are redirected to the Login
server and by design, it passes an
account number that is buried deep
down in an XML document. It is easy to
tamper and guess another user’s
number. If an HTTP request is made
with this number, it fetches other
user’s profile. An attacker can open a
dummy account and exploit this hole
to harvest several users’ critical
information from their profiles.

| Rapid7.com 14Top 10 Business Logic Attack Vectors

AV9 - File or
Unauthorized URL
Access and Business
Information Extraction
Identity
Business applications contain critical
information in their features, in the
files that are exported and in the
export functionality itself. A user can
export their data in a selected file
format (PDF, XLS or CSV) and down-
load it. If this functionality is not
carefully implemented, it can enable

asset leakage. An attacker can extract
this information from the application
layer. This is one of the most common
mistakes and easy to exploit as well.
These files can be fetched directly
from URLs or by using some internal
parameters.

Example:

A banking application allows users to
fetch their monthly transactions in
CSV or XLS format. These files are
created when a request for the
monthly transaction list is made and a
temporary link is created for down-

loading the information, which is given
to the user to download the statement.
An attacker can analyze this mecha-
nism and identify the hidden call. If
this call is not well guarded with
proper authorization, then it leads to
possible compromise. An attacker can
analyze the file naming convention and
start guessing for another users’ URLs
and extract this information from the
application. This flaw can prove very
deadly since it leads to privacy and
security concerns for the application
owner.

Here we have a URL to down-
load a document. Clearly, by

guessing a user ID, an
attacker can find other

documents residing on the
server.

Fetching another user’s docu-
ment from application.

How to test for this business logic flaw:

• During the profiling phase or through a particular proxy, observe the HTTP traffic, both request and response blocks.

• POST/GET requests would have typical parameters either in a name-value pair, JSON, XML or Cookie. Both the name of
parameter and value need to be analyzed.

• Identify file call functionalities based on parameter names like file, doc, dir etc. These parameters will point you to
possible unauthorized file access vulnerabilities.

• Once a target parameter has been identified start doing basic brute force or guess work to fetch another user’s files
from server.

| Rapid7.com 15Top 10 Business Logic Attack Vectors

AV10 – Denial of
Services (DoS) with
Business Logic
Denial of Service (DoS) vulnerabilities
are very costly for business applica-
tions because they bring down the
application for a significant amount of
time or at a critical juncture. Many
features, if not implemented correctly,
can lead to a DoS condition where the
attacker can identify a loophole and try
to exploit it. In some cases, the design
itself creates the possibility of a DoS
attack, and in other cases, race
conditions force a DoS vulnerability.
There are no universal DoS attacks
like TCP flooding on networking at the
application layer, but it depends on the

features and the applications. In some
cases, infinite loops implemented in
the application layer can force a DoS
attack.

Example:

• Airline systems provide a window
of three minutes before you
choose a seat or buy a ticket.
During these three minutes, an
attacker can put many tickets on
hold at the same time without
having the intention of buying any
tickets. This scenario leads to a
DoS for an actual user who wants
to buy a ticket since all seats are
on hold for those three minutes.
The actual buyer gets a message
that the flight is full and the

attackers causes a DoS.

• An auction site blocks a user for
24 hours after three incorrect
attempts. If two users bid on the
same product before the last three
minutes, a malicious user can
complete three attempts on behalf
of the opponent user and lock his/
her account, The malicious user
then logs-in and places the final
bid. The competing user will never
get a chance to log in since their
account is locked. It is clear case
of DoS. A lot of business function-
alities allows this type of DoS
attack and it is important to put
them on a threat model and
provide defense at application
layer.

Conclusion
Business logic flaws are difficult to identify and discover. These flaws are unique to each application and must be discov-
ered by manual testing. This paper is intended as a starting point to assist penetration testers with looking for these flaws
as a part of their security reviews. Rapid7 also offers, as a part of its AppSpider OnDemand add on services,, manual
testing for business logic flaws in web applications.

About Rapid7

Rapid7 cybersecurity analytics software and services reduce threat exposure and detect compromise for 3,900 organiza-
tions, including 30% of the Fortune 1000. From the endpoint to cloud, we provide comprehensive real-time data collection,
advanced correlation, and unique insight into attacker techniques to fix critical vulnerabilities, stop attacks, and advance
security programs. Learn more at www.rapid7.com.

	Introduction
	Business Scenarios and Issues
	Attack Vectors for Business Logic
	AV1 - Authentication flags and privilege escalations at application layer
	AV2 - Critical Parameter Manipulation and Access to Unauthorized Information/Content
	AV3 - Developer’s cookie tampering and business process/logic bypass
	AV4 - LDAP Parameter Identification and Critical Infrastructure Access
	AV5 - Business Constraint Exploitation
	AV6 – Business
Flow Bypass
	AV7 - Exploiting Clients Side Business Routines Embedded in JavaScript, Flash or Silverlight
	AV8 - Identity or
Profile Extraction
	AV9 - File or Unauthorized URL Access and Business Information Extraction Identity
	AV10 – Denial of
Services (DoS) with Business Logic
	Conclusion

